cis-trans Peptide-Bond Isomerization in α -Methylproline Derivatives

by Vladimir Y. Torbeev, Erik Fumi, Marc-Olivier Ebert, W. Bernd Schweizer, and Donald Hilvert*

Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli Str. 10, CH-8093 Zurich (e-mail: hilvert@org.chem.ethz.ch)

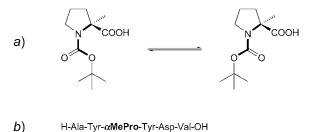
Dedicated to Professor Dieter Seebach on the occasion of his 75th birthday

a-Methyl-L-proline is an *a*-substituted analog of proline that has been previously employed to constrain prolyl peptide bonds in a *trans* conformation. Here, we revisit the *cis-trans* prolyl peptide bond equilibrium in derivatives of *a*-methyl-L-proline, such as *N*-Boc-protected *a*-methyl-L-proline and the hexapeptide H-Ala-Tyr-*a*MePro-Tyr-Asp-Val-OH. In Boc-*a*-methyl-L-proline, we found that both *cis* and *trans* conformers were populated, whereas, in the short peptide, only the *trans* conformer was detected. The energy barrier for the *cis-trans* isomerization in Boc-*a*-methyl-L-proline was determined by line-shape analysis of NMR spectra obtained at different temperatures and found to be 1.24 kcal/mol (at 298 K) higher than the corresponding value for Boc-L-proline. These findings further illuminate the conformationally constraining properties of *a*-methyl-L-proline.

Introduction. – Proline residues have a special significance in protein chemistry due to their effects on protein folding [1] and function [2]. The five-membered pyrrolidine ring places severe constraints upon rotation of the N–C(α) (φ angle) and C(α)–C_{CO} (ψ angle) bonds, greatly limiting the φ/ψ space accessible to the peptide backbone. In addition, proline is distinct from all other coded α -amino acids in that the barrier for *cis-trans* isomerization of its peptide bond is significantly lower. Typical values are in the range of 14–24 kcal/mol, which enables proline residues to function as molecular switches [2]. In one representative study, it was shown that *cis-trans* isomerization of a specific proline residue triggers conformational changes of a neurotransmitter-gated ion channel; *cis-trans* isomerization of this single proline acts as a switch for the interconversion between the open and closed states of the channel [3].

One elegant approach to influence the *cis-trans* equilibrium of prolines in peptides and proteins is based on modulating the strength of the $n_{CO} \rightarrow \pi^*_{CO}$ orbital interaction between the C=O moiety of the preceding residue and the C=O group of proline. For example, the configuration at C(4) of (2*S*,4*R*)-4-fluoroproline stabilizes the *exo* conformation of the ring *via* a *gauche* effect, which, in turn, leads to an enhanced $n \rightarrow \pi^*$ interaction and thus higher stability of the *trans*-prolyl conformer (6.7:1 *vs.* 4.6:1 for proline in the model compound Ac-Xaa-OMe [4]). This finding led *Raines* and co-workers to propose a stereoelectronic explanation for the high thermal stability of collagen, which was validated by chemical synthesis of an unnatural collagen analog that contained (4*R*)-4-fluoroproline and, as a result, possessed enhanced thermostability [5].

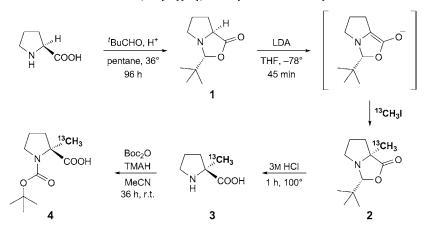
Population of either *cis* or *trans* conformers can be strongly enhanced by restricting the conformational freedom of proline's five-membered ring. For example, L-5,5'-


^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

dimethylproline exists solely as the *cis* conformer [6], whereas the bicyclic derivative 2,4-methanoproline (2-carboxy-2,4-methanopyrrolidine) strongly favors the *trans* conformer [7]. α -Methylproline (α MePro) was shown to populate exclusively the *trans* conformer in the model system Ac- α MePro-NHMe [8]. In one pioneering study, *Robinson* and co-workers incorporated α -methylproline into the peptide hormone bradykinin and found that derivatives containing α -methylproline adopt a reverse-turn conformation, whereas wild-type bradykinin is disordered in solution [9].

Incorporation of $C(\alpha)$ -alkylated amino acids has long been recognized as a means of introducing local conformational constraints into peptides [10]; such amino acids can stabilize \mathcal{J}_{10} or α -helical structures [11][12], fully-extended conformations [13], as well as β -turns [14]. Among the $C(\alpha)$ -methylated standard 20 amino acids, α -methylproline is the most constrained residue. Its φ torsion angle is strongly restricted, the tertiary amide torsion angle ω is predicted to adopt the only *trans* conformation in linear peptides, and the side-chain χ^n torsion angles are also rigidified. Based on X-ray structural studies of several model dipeptides containing α -methylproline, it was recently shown that the conformational φ/ψ space of α -methylproline is restricted to two regions, namely the α -helix and the polyproline type-II structure [15][16].

Although the *trans* peptide-bond conformation is favored for α -methylproline, this preference is not absolute. The *cis* conformer was detected in solution studies of the heterochiral dipeptide Ac-L- α MePro-D- α MePro-NHⁱPr, where it constituted 17% of the mixture [16]. In this article, we report a study of *cis-trans* isomerization in Boc- α -methylproline, a derivative containing a moderately bulky urethane group that allows detection of both *cis* and *trans* forms, and hence determination of the energy barrier for the isomerization process (*Scheme 1,a*). To explore the conformational preferences in a more complex setting, we also incorporated α -methylproline in place of a proline residue in the hexapeptide H-Ala-Tyr-Pro-Tyr-Asp-Val-OH (*Scheme 1,b*). This peptide sequence was reported to display an anomalously high population (57%) of the *cis* conformation [17] and is, therefore, ideal to test the switching capabilities of the α -methylproline residue.


Scheme 1. α -Methylproline as a Conformational Switch. a) The tertiary Boc-urethane moiety undergoes cis-trans isomerization in Boc- α -(S)-methylproline. b) Amino acid sequence of the hexapeptide with the α -(S)-methylproline residue studied in this work. The corresponding peptide with an unmodified proline residue was reported to have an unusually high cis-prolyl bond content (57%) [17].

Results and Discussion. – To enable convenient monitoring of the *cis-trans* equilibrium by NMR methods, we introduced a [¹³C]-label at the Me position of α -

methylproline. The chemical synthesis of $[{}^{13}CH_3]$ -labeled Boc- α -methylproline was performed according to a procedure developed by *Seebach* and co-workers [18][19] (*Scheme 2*). Briefly, proline and pivalaldehyde were condensed to generate a bicyclic adduct that was deprotonated and stereoselectively alkylated with commercially available [${}^{13}C$]methyl iodide. The alkylation product was converted to α -[${}^{13}C$]methyl-Lproline upon boiling with acid, and subsequently Boc-protected [20] to yield 1.471 g (20%) of Boc- α -[${}^{13}C$]methyl-L-proline, a building block suitable for solid-phase peptide synthesis [21]. The product was characterized by elemental analysis, optical activity, and 1 H- and 13 C-NMR spectroscopy.

Scheme 2. Chemical Synthesis of Boc-a-[¹³C]Methylproline according to the Procedure Reported by Seebach and Co-workers (see [18][19]). Total yield for the final product was 20%.

Inspection of the ¹H- and ¹³C-NMR data indicates that Boc- α -methyl-L-proline adopts two conformations in solution, corresponding to the *cis* and *trans* geometries of the urethane moiety (Figs. 1 and 2), as is common for other Boc-protected amino acids [22]. We set out to determine the energy barrier for the $cis \rightarrow trans$ isomerization in this derivative and find out to what extent the introduction of an α -Me group alters the barrier. ¹H-NMR Spectra were recorded for Boc-a-methyl-L-proline and Boc-a-Lproline in DMSO at temperatures ranging from 293 to 343 K. Rate constants for $cis \rightarrow$ trans isomerization were extracted by line-shape analysis of the NMR spectra (Fig. 1). Fitting of the kinetics data to the Eyring equation yielded a Gibbs activation free energy for Boc- α -methyl-L-proline higher than that for Boc- α -L-proline by 1.24 kcal/ mol at room temperature (Fig. 3 and Table). This finding contradicts a previous theoretical study, which predicted that the barrier for $cis \rightarrow trans$ isomerization of acetyl- α -L-methylproline-methylamide would be 3.9 kcal/mol lower than the corresponding barrier for isomerization of the L-proline derivative [23]. Although the chemical structures are not identical, this disagreement is probably due to the inadequacy of the theoretical method used to calculate the barrier. The classical molecular-mechanics methodology used by the authors [23] does not properly describe the mechanism of this chemical transformation.

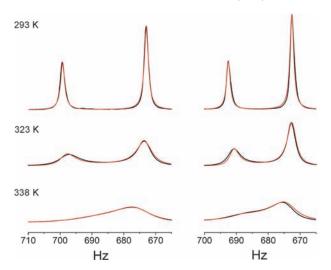


Fig. 1. ¹*H-NMR Spectra at different temperatures for Boc-proline* (left column) and Boc- α -methylproline (right column). Full coalescence of the two resonances occurs for Boc-proline at 338 K (or 65°), while, at the same temperature, Boc- α -methylproline's signals have not fully coalesced. Experimental spectra are in black, and calculated line shapes are in red.

Table. cis Content, Activation Parameters, and Rate Constants for cis \rightarrow trans Isomerization of Boc-Pro and Boc- α -MePro

	<i>cis</i> [%]	ΔH^{\ddagger} [kcal/mol]	ΔS^{\ddagger} [cal/mol·K]	$\Delta G^{\ddagger}_{_{298 \text{ K}}}$ [kcal/mol]	$k_{c \to t}$ (at 293 K) [s ⁻¹]
Boc-Proline	38	17.46	- 1.15	17.81	1
Boc-α-[¹³ C]Methylproline	35	18.28	- 2.53	19.05	0.5

To obtain crystals suitable for X-ray structure analysis, chemically synthesized Boc- α -methyl-L-proline was recrystallized from Et₂O. Well-defined crystals were obtained, one of which was analyzed by X-ray diffraction (see *Exper. Part* and *Fig. 4*). Surprisingly, the Boc urethane moiety was found to be locked in the *cis* conformation (*Fig. 4, a*). The backbone angles ($\varphi = -52.2^{\circ}$ and $\psi = -32.9^{\circ}$) correspond to α -helical conformation. The five-membered prolyl ring adopts the *exo* conformation; the *endo* conformation is presumably disfavored sterically in five-membered prolyl rings with an α, α' -tetrasubstituted C-atom.

Usually, the urethane moiety in *N*-protected α -methylproline derivatives adopts a *trans* conformation [15][16]. The only structure of an α, α -tetrasubstituted prolyl derivative with the Boc urethane group in a *cis* conformation was reported for a L-proline-derived spirolactam [24], which is structurally rather different than α -methylproline. *N*-Benzyl- α -methylproline, which more closely resembles Boc- α -methyl-L-proline, adopts the *trans* conformation in the solid state [16]. In the reported crystal structure [16], the five-membered prolyl ring is in an *exo* conformation, and the φ and ψ angles are -56 and -33° , respectively, similar to the values observed for Boc- α -methyl-L-proline (see above).

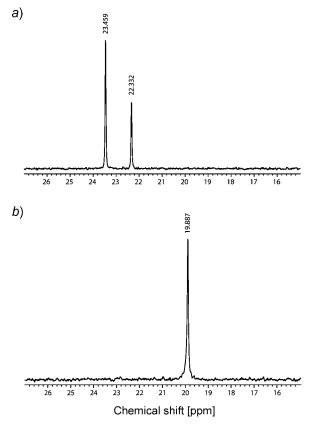


Fig. 2. ¹³C- $f^{1}H$ }-NMR Spectra of a) Boc- α - $f^{13}C$]methylproline in (D_{6})DMSO, and b) H-Ala-Tyr- α - $f^{13}CH_{3}$]MePro-Tyr-Asp-Val-OH in 95% $H_{2}O/5\%$ $D_{2}O$ with (D_{6})DSS

Analysis of the crystal structure of *N*-Boc- α -methylproline does not reveal an obvious reason for the preference for the *cis* amide conformation. The molecules in the crystals are arranged as H-bonded chains linked by a unit-cell translation in the *a* crystallographic direction between the COOH H-atom and the urethane C=O O-atom (*Fig. 4, b*). A rather similar molecular-chain arrangement was also observed in the crystal structure of *N*-benzyl- α -methylproline in its *trans* conformation. Individual molecules were also connected by H-bonds between neighboring COOH and urethane moieties, albeit related by a 2₁ screw axis of the *P*2₁2₁2₁ space group [16]. It is possible that, under different conditions, the *trans* conformer of *N*-Boc- α -methylproline can also be crystallized.

A short peptide with the sequence H-Ala-Tyr-Pro-Tyr-Asp-Val-OH was previously reported to exhibit an anomalously high population (57%) of the *cis* proline conformer [17]. It was hypothesized that stacking of the aromatic rings of the i-1 and i+1 residues against the proline ring stabilizes a compact conformation of the linear peptide, reinforcing the preference for the *cis* peptide bond conformation of the internal proline residue [25][26]. To test whether such a peptide sequence context can

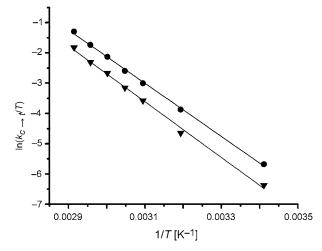


Fig. 3. Eyring plot for the cis-trans isomerization of (S)-Boc-α-methylproline (triangles) and (S)-Bocproline (circles) in DMSO

still enable a *cis* prolyl conformation when proline is replaced by α -methylproline, we synthesized the corresponding peptide analog and studied its conformational properties by 2D-NMR.

The synthesis of the α -methylproline-containing polypeptide was accomplished by Boc-SPPS (solid-phase peptide synthesis) methodology [21]. In the ¹³C-{¹H}-NMR spectrum, we observed only a single peak (*Fig. 2, b*), clearly indicating that only one conformer is populated. We further collected DQF-COSY, ¹H-TOCSY, and ¹H-ROESY data for this peptide molecule, allowing full assignment of the NMR resonances and determination of the local conformation of α -methylproline. A characteristic ¹H,¹H-NOE peak was observed between the α -CH moiety of Tyr2 and the δ -CH₂ group of α -methylproline's five-membered ring (*Fig. 5*), unambiguously showing that the conformation of the prolyl amide bond in this peptide is *trans*.

Conclusions. – Previously, it was shown that α -methylproline is useful for constraining prolyl-amides in the *trans* conformation. Experimental studies exploring the energy barriers for *cis-trans* isomerization of α -methylproline derivatives have not been described, however. Recent theoretical study predicted counterintuitively that the barrier for isomerization of acetyl- α -methyl-L-proline-methylamide is lower than for the corresponding L-proline derivative [23]. In this work, we showed experimentally that the activation free energy barrier for the *cis-trans* isomerization of the prolyl amide bond is higher in α -methylproline than in unmodified proline. Measurements were carried out on *N*-Boc-derivatives of α -methylproline and proline, respectively, for which the *cis* and *trans* conformations were both directly observed by NMR. For these derivatives, the equilibrium concentration of *cis* and *trans* conformers varied insignificantly (35% *cis* for of *N*-Boc- α -methylproline and 38% *cis* for *N*-Boc-proline). Unexpectedly, however, only the *cis* amide isomer of an α -methylproline derivative crystallized.

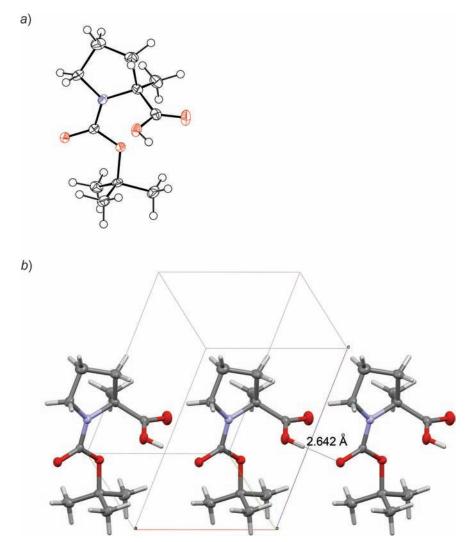


Fig. 4. Crystal structure of (S)-N-Boc- α -methylproline as determined by X-ray diffraction (space group $P2_1$. a) ORTEP Plot at 50% probability level of the molecular structure. *cis* Conformer was observed in crystals formed by recrystallization from Et₂O. b) Intermolecular H-bonding in the crystal between the C=O and urethane groups of adjacent molecules.

Nevertheless, when incorporated into a short linear hexapeptide, α -methylproline strongly favors the *trans*-prolyl-amide conformation. This bias can even override sequence constraints that normally encourage population of the *cis* isomer. In comparison to the Boc urethane derivative, the polypeptide structure is sterically more congested around its amide bonds, and this leads to a more pronounced preference for the *trans* conformer. The only previous study where the *cis* conformer was observed in a peptide by NMR involved a heterochiral dipeptide with a D-amino acid in its

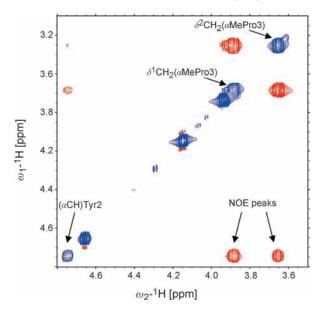


Fig. 5. Section of the ¹H-ROESY spectrum of H-Ala-Tyr- α -[¹³CH₃]MePro-Tyr-Asp-Val-OH in 95% H₂O/ 5% D₂O at pH 4.0 with 100 μ M (D₆)DSS ([peptide] = 6 mM). The presence of NOE peaks from the α -CH atom of Tyr2 residue to the δ -CH₂ moiety of α -methylproline provides strong support for the *trans* conformation of the peptide bond of α -methylproline.

sequence [16]. One can speculate that the conformational perturbation induced by the heterochiral nature of the peptide may be the cause for such an effect.

Experimental Part

General. L-Proline and pivalaldehyde (97%) were purchased from ABCR, Boc-amino acids from Bachem, biograde CF₃COOH (TFA) from Halocarbon Products, HF from Linde Gas, HBTU from Peptides International, HATU from AAPPTEC, DIEA (EtNⁱPr₂) from Applied Biosystems, Boc₂O from Sigma-Aldrich, and ¹³C-labeled MeI from Chembridge Isotope Laboratories. Anal. HPLC was performed on a Dionex Ultimate RS 3000 system. Prep. HPLC was performed on a Waters instrument equipped with 515 HPLC pumps and a 2487 UV absorbance detector. ¹H- and ¹³C-NMR spectra were acquired on a Varian Mercury 300 spectrometer operating at 300 MHz for ¹H and 75 MHz for ¹³C; δ in ppm rel. to Me_4Si as internal standard, J in Hz. Dynamic NMR studies were performed at seven different temps. ranging from 293 to 343 K on a Bruker Avance III instrument operating at 500 MHz. The temps. were adjusted with the help of an NMR tube fitted with a thermometer. Analysis of dynamic NMR data was performed with the help of iNMR (v. 5.1.2) software. The population of the two isomers and the rate constants of $cis \rightarrow trans$ isomerization $k_{c \rightarrow t}$ were determined by simulation. The populations did not significantly change in the temp. range of the recording. The derived rate constants were fitted to the *Eyring* equation to obtain the activation parameters and the rate constant of $cis \rightarrow trans$ isomerization at r.t. A series of 2D-NMR recordings were performed to elucidate the structure of the hexapeptide. DQF-COSY, TOCSY, and ROESY spectra were collected with the help of a Bruker Avance III 600 MHz instrument. Data were processed with TopSpin software and analyzed in Sparky software. LC/MS was conducted on the system composed from Dionex Ultimate 3000 UPLC integrated with a ThermoFinnigan LCQdeca mass-spectrometer; in m/z.

Synthesis of ¹³C-Labeled α -Methylproline. (S)-1-(tert-Butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic Acid. (2R,5S)-2-(tert-Butyl)-1-aza-3-oxabicyclo[3.3.0]octan-4-one (1) was synthesized as described in [18][19]. (i-Pr)₂NH (13.6 mmol) and 1.6M BuLi in hexane (14.1 mmol) were added to THF (12 ml) at -78° , and the mixture was warmed to r.t. over 20 min. The mixture was recooled to -78° and added (as described in [27]) to a soln. of 1 (10.8 mmol) suspended in THF (60 ml) at -78° . After 45 min, commercially available ¹³C-labeled MeI (14.0 mmol) was added to the mixture, which was then warmed to 0° over 3 h. The resulting soln. was successively washed with sat. NH₄Cl, NaCl, and Na₂CO₃ solns. (30 ml each). The product, (2R,5S)-2-(tert-butyl)-5-[¹³C]methyl-1-aza-3-oxabicyclo[3.3.0]octan-4-one (2), was extracted from the mixture twice with AcOEt (20 ml), dried (MgSO₄), and concentrated under reduced pressure.

Compound **2** (7.813 mmol) was suspended in 3M HCl (40 ml) and heated at 100° for 1 h. The resulting product, (S)-2- $l^{13}C$]methylpyrrolidine-2-carboxylic acid (**3**), was concentrated under reduced pressure and washed four times with CH₂Cl₂ (20 ml). The combined org. phases were extracted with 3M HCl (20 ml), and the combined aq. phases were concentrated under reduced pressure at 60°. The residue was suspended in H₂O (50 ml) and purified on a *Dowex 50W* × 8 (H⁺ form) column [28].

Compound **3** (8.9 mmol) was Boc-protected as described in [20], yielding 7.1 mmol of (S)-1-(tertbutoxycarbonyl)-2-[^{13}C]methylpyrrolidine-2-carboxylic acid (**4**), which was further recrystallized from Et₂O at 4° (yield in the re-crystallization step 45%, the yield for compound **4** was 20% based on the amount of starting L-proline. [a] $_{25}^{25}$ = -68.94 (c = 0.69, CHCl₃). Anal. calc. for C₁₀¹³CH₁₉NO₄ (230.27): C 57.81, H 8.32, N 6.08; found C 57.55, H 8.41, N 6.10.

Hexapeptide H-Ala-Tyr- α -[¹³C]/MePro-Tyr-Asp-Val-OH was prepared manually by stepwise solidphase peptide synthesis using '*in situ* neutralization' Boc chemistry (Boc-SPPS) [21]. Side-chain protection for amino acids was as follows: Asp(OcHex), Tyr(Br-Z). The Boc- α -methylproline and Tyr2 residue were coupled with HATU (=2-(7-aza-1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate). After chain assembly was complete, the peptide was deprotected and simultaneously cleaved from the resin support by treatment with anh. HF containing 10% (*v*/*v*) *p*-cresol for 1 h at 0°. After evaporation of the HF under reduced pressure, the crude product was precipitated and triturated with chilled Et₂O, and subsequently dissolved in 50% aq. MeCN containing 0.1% CF₃COOH (TFA). Prep. HPLC of the crude peptide after SPPS was performed on a *Macherey-Nagel Nucleosil C*₁₈ (250 × 20 mm, 200 Å, 7 µm) column using an appropriate shallow gradient of MeCN/0.08% TFA vs. H₂O/0.1% TFA. The fractions containing the desired purified peptide product were identified by anal. LC and LC/ MS, combined and lyophilized. LC/MS: 742.40 Da (calc. 742.35 Da (monoisotopic)).

NMR Characterization of ¹³C-Labelled Compounds. (2R,5S)-2-(tert-Butyl)-5-[¹³C]methyl-1-aza-3oxabicyclo[3.3.0]octan-4-one (=(3R,7aS)-3-tert-Butyltetrahydro-7a-(¹³C)methyl-1H-pyrrolo[1,2c][1,3]oxazol-1-one; **2**). ¹H-NMR (300 MHz, CDCl₃): 0.89 (s, 'Bu); 1.36 (d, ¹J(CH) = 128.4, ¹³CH₃); 1.62–1.85 (m, 3 H, CH₂(β), CH₂(γ)); 2.09–2.19 (m, 1 H of CH₂(β)); 2.77–2.85 (m, 1 H of CH₂(δ)); 3.06–3.14 (m, 1 H of CH₂(δ)); 4.24 (s, 'BuCH).

 α - $l^{13}CJMethyl-L-proline$ (**3**). ¹H-NMR (300 MHz, CD₃OD): 1.59 (d, ¹J(CH) = 128.3, ¹³CH₃); 1.80 – 2.10 (m, 3 H, CH₂(β), CH₂(γ)); 2.34 – 2.46 (m, 1 H of CH₂(β)); 3.22 – 3.46 (m, 2 H of CH₂(δ)).

1-(tert-*Butoxycarbonyl*)-2-*[*¹³*C*]*methyl*-L-*proline* (**4**). ¹H-NMR (300 MHz, CD₃OD): 1.46 (*s*, 6 H, 'Bu, conformer A); 1.48 (*s*, 3 H, 'Bu, conformer B); 1.54 (*d*, ³*J*(CH) = 128.4, 2 H, ¹³CH₃, conformer A); 1.56 (*d*, ³*J*(CH) = 128.4, 1 H, ¹³CH₃, conformer B); 1.94–1.98 (*m*, 3 H, CH₂(β), CH₂(γ)); 2.19–2.31 (*m*, 1 H of CH₂(β)); 3.49–3.54 (*m*, CH₂(δ)).

X-Ray Analysis. Crystal data for **4**: C_{10}^{13} CH₁₉NO₄, M_r 230.27; crystal dimensions, $0.28 \times 0.24 \times 0.08$ mm; clear colorless plate, monoclinic space group, P_{2_1} , cell parameters at 100 K: a = 6.2115(4), b = 12.0649(6), c = 8.5912(5) Å, $\beta = 108.568(2)^\circ$, V = 610.32(6) Å³, Z = 2, $D_x = 1.248$ g·cm⁻³, $F_{000} = 248$. The X-ray intensity data were collected on a *Bruker Nonius APEX-II CCD* system with MoK_a radiation ($\lambda = 0.71073$ Å) equipped with a graphite monochromator. Frame integration, data reduction, and cell refinement were performed with the *Bruker SAINT* software package [29]. The number of measured and unique reflexions are 7526 and 2679 (2519 with $I > 2\sigma(I)$), resp., in the range of $3.0^\circ < \theta < 27.6^\circ$, $R_{int} = 0.023$. The structures were solved and refined with SHELXS [30] and OLEX2 [31]. Non-H-atoms were localized by direct methods and refined anisotropically by full-matrix least-squares analysis. H-Atom positions could be localized in a difference electron-density map and were refined with isotropic

temp. factors. Final agreement factors for 221 parameters are $R[F^2 > 2\sigma(F^2)] = 0.033$, $wR(F^2) = 0.082$ $(w = 1/[\sigma^2(F_o^2) + (0.045(F_o^2 + 2F_c^2)/3)^2])$.

CCDC-894992 contains the supplementary crystallographic data for this article. This data can be obtained free of charge from *The Cambridge Crystallographic Data Centre via* www.ccdc.cam.ac.uk/data_request/cif.

REFERENCES

- [1] R. P. Jakob, F. X. Schmid, J. Mol. Biol. 2009, 387, 1017.
- [2] K. P. Lu, G. Finn, T. H. Lee, L. K. Nicholson, Nat. Chem. Biol. 2007, 3, 619.
- [3] S. C. R. Lummis, D. L. Beene, L. W. Lee, H. A. Lester, R. W. Broadhurst, D. A. Dougherty, *Nature* 2005, 438, 248.
- [4] L. E. Bretscher, C. L. Jenkins, K. M. Taylor, M. L. DeRider, R. T. Raines, J. Am. Chem. Soc. 2001, 123, 777.
- [5] S. K. Holmgren, K. M. Taylor, L. E. Bretscher, R. T. Raines, Nature 1998, 392, 666.
- [6] S. S. A. An, C. C. Lester, J.-L. Peng, Y.-J. Li, D. M. Rothwarf, E. Welker, T. W. Thannhauser, L. S. Zhang, J. P. Tam, H. A. Scheraga, J. Am. Chem. Soc. 1999, 121, 11558.
- [7] L. Piela, G. Nemethy, H. A. Scheraga, J. Am. Chem. Soc. 1987, 109, 4477.
- [8] N. G. Delaney, V. Madison, J. Am. Chem. Soc. 1982, 104, 6635.
- [9] J. H. Welsh, O. Zerbe, W. von Philipsborn, J. A. Robinson, FEBS Lett. 1992, 297, 216.
- [10] G. N. Ramachandran, R. Chandrasekaran, 'Progress in Peptide Research, Vol. II' (Proceedings of the Second American Peptide Symposium, Cleveland, 1970), Ed. S. Lande, Gordon and Breach, New York, 1972, pp. 195–215.
- [11] P. Balaram, Curr. Opin. Struct. Biol. 1992, 2, 845.
- [12] R. Kaul, P. Balaram, Bioorg. Med. Chem. 1999, 7, 105.
- [13] S. Prasad, S. Mitra, E. Subramanian, D. Velmurugan, R. B. Rao, P. Balaram, *Biochem. Biophys. Res. Commun.* 1994, 198, 424.
- [14] G. Valle, N. Crisma, C. Toniolo, S. Polinelli, W. H. J. Boesten, H. E. Schoemaker, E. M. Meijer, J. Kamphuis, *Int. J. Pept. Protein Res.* 1991, 37, 521.
- [15] A. Moretto, F. Terrenzani, M. Crisma, F. Formaggio, B. Kaptein, Q. B. Broxterman, C. Toniolo, *Biopolymers* 2008, 89, 465.
- [16] M. De Poli, A. Moretto, M. Crisma, C. Peggion, F. Fromaggio, B. Kaptein, Q. B. Broxterman, C. Toniolo, *Chem. Eur. J.* 2009, 15, 8015.
- [17] H. J. Dyson, M. Rance, R. A. Houghten, R. A. Lerner, P. E. Wright, J. Mol. Biol. 1988, 201, 161.
- [18] D. Seebach, M. Boes, R. Naef, W. B. Schweizer, J. Am. Chem. Soc. 1983, 105, 5390.
- [19] A. K. Beck, S. Blank, K. Job, D. Seebach, T. Sommerfeld, Org. Synth., Coll. 1998, 9, 626.
- [20] E. M. Khalil, N. L. Subasinghe, R. L. Johnson, Tetrahedron Lett. 1996, 37, 3441.
- [21] M. Schnölzer, P. Alewood, A. Jones, D. Alewood, S. B. H. Kent, Int. J. Pept. Res. Ther. 2007, 13, 31.
- [22] C. Cox, T. Lectka, J. Org. Chem. 1998, 63, 2426.
- [23] C. Melis, G. Bussi, S. C. R. Lummis, C. Molteni, J. Phys. Chem. B 2009, 113, 12148.
- [24] F. Kelleher, S. Kelly, J. Watts, V. McKee, Tetrahedron 2010, 66, 3525.
- [25] J. Yao, H. J. Dyson, P. E. Wright, J. Mol. Biol. 1994, 243, 754.
- [26] J. Yao, V. A. Feher, B. F. Espejo, M. T. Reymond, P. E. Wright, H. J. Dyson, J. Mol. Biol. 1994, 243, 736.
- [27] D. Seebach, T. Weller, G. Protschuk, A. K. Beck, M. S. Hoekstra, Helv. Chim. Acta 1981, 64, 716.
- [28] A. K. Beck, D. Seebach, Chimia 1988, 42, 142.
- [29] Bruker (2010), SAINT Release 7.68A, Integration Software for Single Crystal Data, Bruker AXS Inc., Madison, USA.
- [30] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.
- [31] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.

Received August 17, 2012